Projective extensions of fields
نویسنده
چکیده
A field K admits proper projective extensions, i.e. Galois extensions where the Galois group is a nontrivial projective group, unless K is separably closed or K is a pythagorean formally real field without cyclic extensions of odd degree. As a consequence, it turns out that almost all absolute Galois groups decompose as proper semidirect products. We show that each local field has a unique maximal projective extension, and that the same holds for each global field of positive characteristic. In characteristic 0, we prove that Leopoldt’s conjecture for all totally real number fields is equivalent to the statement that, for all totally real number fields, all projective extensions are cyclotomic. So the realizability of any non-procyclic projective group as Galois group over Q produces counterexamples to the Leopoldt conjecture, while the non-realizability may produce counterexamples to the classical inverse Galois problem.
منابع مشابه
On component extensions locally compact abelian groups
Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...
متن کاملUniversal Central Extension of Current Superalgebras
Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras are very impo...
متن کاملProjective Pairs of Profinite Groups
We generalize the notion of a projective profinite group to a projective pair of a profinite group and a closed subgroup. We establish the connection with Pseudo Algebraically Closed (PAC) extensions of PAC fields: Let M be an algebraic extension of a PAC field K. Then M/K is PAC if and only if the corresponding pair of absolute Galois groups (Gal(M),Gal(K)) is projective. Moreover any projecti...
متن کامل9 Combinatorial Geometries of Field Extensions
We classify the algebraic combinatorial geometries of arbitrary field extensions of transcendence degree greater than 4 and describe their groups of automorphisms. Our results and proofs extend similar results and proofs by Evans and Hrushovski in the case of algebraically closed fields. The classification of projective planes in algebraic combinatorial geometries in arbitrary fields of charact...
متن کاملAbstract algebra, projective geometry and time encoding of quantum information
algebra, projective geometry and time encoding of quantum information Michel Planat, Metod Saniga To cite this version: Michel Planat, Metod Saniga. Abstract algebra, projective geometry and time encoding of quantum information. World Scientific. Endophysics, Time, Quantum and the Subjective, World Scientific, pp. 409-426, 2005, eds R. Buccheri, A.C. Elitzur and M. Saniga. HAL Id: hal-00004513 ...
متن کامل